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1. INTRODUCTION

UsING the geometrical theory of confounding, Bose (1947) has investi-
gated the problem of determining the maximum number of factors
that can be accommodated in the case of the general symmetrical fac-
torial design sm, in which each block is of size s, so that no degrees of
freedom belonging to a main effect or an interaction involving ¢t or a
lesser number of factors are confounded. Denoting this number by
m, (r, 5), he has shown that this equals the maximum number of points
which can be chosen in PG (r — 1, s) so that no ‘ ¢’ should be conjoint.
By noting that m, (r, s) must equal the number of distinct points in
PG(r—1,s5), we obtain Fislier’s result (Fisher, 1942, 1945)

a9 =51 M

For the case t =3, Bosé has obtained the following results:—
(a) my(3,5) = s+ 2, when s is a power of 2.
— 54 1, when s is a power of an odd prime.
(b) mg (4,5) = s® + 1, when s is a power of an odd prime.
(c) mg(r,2) =22

It follows from (c) that in a factorial experiment in which
each factor is at 2 levels and the block size is 2%, the maximum number
of factors that can be accommodated so that no main effect or first
order interaction is confounded is 2¢. In this note, we shall, using Bose’s
method, construct the (2'6, 2'*) and the associated (215, 210), (214, 29), etc,,
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designs, and also enumerate the degrees of freedom actually confounded
in each case.

2. THE (2%, 211) COoNFOUNDED DESIGN

According to Bose’s method, thie construction of the (216, 2!1)
design, keeping up to second order interactions unconfounded, requires
the selection of 16 points in PG (4, 2), no three of which are collinear.
These are given by the columns of the matrix.

100001 1111100001
0100011100010T11°1
00100100101 1101T1 |@
000100101 101T1T10]1
0000100101101 111

The confounded design corresponds to a 4-flat 'in ‘the” 15-flat at
infinity in PG (16, 2), and the equations of thls 4-flat at mﬁmty can be
* written down in the form

X+ Xo+ x5+ x =0
X+ X+ x4+ x, =0
X+ X, F x5+ x =0
xl-}—x3‘+x4+x9 ;O
X+ XgF x5 X =0 l
X1+ X3+ X+ %, =0 L x3 =0 3)
Xo+ X3+ X4+ X12=10
X34 X+ X5+ x5 =0
xz—l—x4'+x5-’}'—x‘14=0
XoF X3+ %5+ %5 =0
Cxy X Xy X+ X X =0

P

In terms of the theory of groups, (3) would correspond to the
11 generators 'ABCF, ABDG, ABEH, ACDJ, ADEK, ACEL, BCDM,
CDEN, ‘BDEO, BCEP and ABCDEQ ‘of the confoundmg sub- group

If Cyy Cg5 .y €7 D€ aNY elements of GF (2) the treatments in
the correspondmg block are determined by the equations.; .



182 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

xl.-+x2+x3+xs =0
X1+ X+ X+ X =,
X+ X+ x5+ x5 =3 -
Xyt X3+ X4+ X9 =4
X1+ X4+ X5+ X = ¢ _
X1+ X3+ X5+ X = ¢ e “@
N i x2+x3+x4+x12=c7 .
X3+ Xg+ X5+ X3 = ¢g
S Xt Xyt X5+ X =6
Xy X3+ X5+ Xi5 = €y

Xy +'Xg + X3+ X4 + X5+ X5 =y

The intrabloc;k sub-group is given by the 32 treatment combination
in the block obtained by taking ¢;=c,=...=¢; =0, and is
shown in Table 1. ‘

Taking the 2048 possible values of ¢, ¢y, ..., ¢y, We get the
2048 blocks of the design. The 2047 degrees of freedom confounded
belong to the 2047 pencils represented by

P+ Q+ A+ 2+ X+ 2+ A A+ A+ A+ 4+
+A10+ A11! A1+ '\4+ A6+ A'I_*—)‘S.-}— A10_*—A115A2
T A+ A+ A+ A+ A+ Ay, Ag + A+ A+ A +
A9 =+ ’\10 + ’\115 Al’ /\2, ’\3’ ’\4’ As: Ad, )\7, As; )\9, Aloa ’\11}

; 5)
where the X’s do not simultaneously vanish. Each pencil now carries
only one degree of freedom, and calculations made show that of the
2047 degrees of freedom confounded, 140 belong to. 4-factor inter-
actions, 448 to 6-factor interactions, 870 to 8-factor interactions, 448 to

10-factor interactions, 140 to 12-factor interactions and the remalmng,
one to the 16-factor interaction.

-3, THE (215 219) CONFOUNDED AND OTHER ASSOCIATED DESIGNS

For obtammg a (21, 210) design of the required type, that is, not
confounding any main effect or first or second order interaction, we have
to simply start with the matrix obtained from (2).by omitting one column,
say, the last, Thus; the columns of the matrix
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100001111110000
0100011100010T171°:
00100100101 1101. [
000100101101110:
0000100101101115_

give the co-ordinates of 15 points in PG (4, 2), no three of Wthh are
collinear.

Treatments are now represented by the finite points of PG (15, 2),
and the vertex of the required design is given by the‘-equafioﬁs 3),
omitting the last equation, viz., X; + Xz + X3 + x4 + x5 +ixj, = 0,
so that the 10 generators of the confounding sub-group are 4BCF,
ABDG, ABEH, ACDJ, ADEK, ACEL, BCDM, CDEN, BDEQO and
BCEP. i

The degrees of freedom confounded are carried by the 1023 pencﬂs
represented by

CPOu b At A At A d A A Ay A o Ay,
Mt A+ A+ 4 2+ A Ao+ A+ A+

_'A+A+MA+A+A+A+A+M¢Jm
Mg Ags Asy Ags Aoy Ay gy Aso)- 0

In this case, of the 1023 degrees of freedom confounded, 105 belong
to 4-factor interactions, 280 to 6-factor interactions, 435 to 8-factor
interactions, 168 to 10 factor interactions and 35 to 12- factor 1nter-
actions. - :

Following this. procedure, the (24, 29), (212, 28), (212, 27), (21, 26),
(210, 25), (2%, 2%), (28, 2%), (27, 2% and (2% 2) designs are readily
constructed, the number of degrees of freedom confounded for the
various high order interactions in these designs being as shown in
Table II, in which the degrees of freedom confounded for the (216, 210)
and (2'%, 2'%) have also been shown for convenience of reference.



TABLE I

Intrablock sub-group for ((2%, 21Y) confounded design

Co-ordinates of 32 points lying on the finite 5-flat

Corresponding treatment combinations
X1 Xz X3 Xy :55 Wg Xp Xy X9 Fpo X11 X2 X1z ¥14 X15 A16
o 0 0 0 0 0 0 O O O O 0 0 0 O0 O 1
1 0 0 60 0 1 1 1 1 1 1 O O O O 1 e f g k7 % / 7
9 1 06 0 o0 1 1 1 0 O C 1 o0 1 ' 1 1 b f g A m 0 ? g
1 106 0 0 0 o0 © 1 1 1 1 9 1 1 0 a ;i & 1 m o P
0 0 1 ¢ o1 o ¢ 1 0 1 1 1 o0 1 1 c f 7 I m = p q
1 01 0 06 0 1 1 o0 1 0 1 1 O 1 O a ¢ g k m  n ?
¢ 1 1. 0 0 0 1 1 1 0 1 0 1 1 0 O b ¢ g k7 I n o
11 1 0 0 1 0 0 0o 1 O o0 1 1 O 1 e b ¢ f 2 7 o 7
4 0 0 ! o0 0 1 0 1 1 0 1 1 1 o0 1 d g 7 2 m ”n o g
1 6 o1 0 1 0 1 0 ¢6 1 1 1 1 0 O a d f k [ m =n 0
0 1 0 1 o0 1 0 1 1 1 ¢ o0 1 o0 1 O b d fF g b 7 n P
11 01 0 01 0 0 0 1 0 1 0 1 1 a & d g I n p ¢
¢ 0 1 106 1 1 01 1 1 0 0 1 1 O e d f g 7 k l 0

SOLLSILVLS TVIALTIADIYOV 40 ALAIOOS NVIANI FHL d0 1VNUNOr 81
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TasLE 11

Number of degrees of freedom for various high order
interactions confounded in (219, 21%), etc., confounded designs

- -

- Total No. Deg@es of fre_edor_p confounded for interactions of
. of degrees
Do ggnfff)‘%c‘l’:j 4 6. 8. 10 2. 14° 16
Factors Factors Factors Factors Factors Factors Factors
(210, 211) | 2047 ‘140 . 448 870 . 448, 140 . . 0. -1
(21, 21?) 1023 105 280 435+ 168 - .85 : -0 =0
(214, 2%). 511 -77  168. 203- .56 - 7- 0. .0
(213, 28) 255 56 - 96 ~ - 87 - 16. 1 0~ -0
(212, 27) 127 38- 52° 387 - 47 07 0 ~0°
(212,29) 63 25 21 10 1 0 0 0
(210, 25) 31 16 12 3 0 0 0 0
(22, 24) 15 10 4 1 0 0 0 0
(28, 2%) . 6 -0 I S, S— .
(27,22)" 37 s "o o o 07 To¥ To”
(2¢,2) TP e 07 o 0 o o
- ° fol . - N -
- ~REFERENCES -
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Note on Two Papers of K R. Narr T

BY H. D. BRUNK

-

CERTAIN questlons raised by Dr. K. R. Nair i in recent papers’?
and in correspondence w1th the '\uthor are answered in this note, Corol-

- -~ e ~
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laries :1 and 2 below are elementary in character, and may appear in
one form or another in the literature, Nevertheless it is hoped that
their presentation here will be of interest to readers of Dr. Nair’s papers.

Let x,, ..., x, be real numbers, x1<x'2< .. ,<7_c,,, % ~Z"3c,'/n
St = 2,’ (x; — ©)%/(n — 1). .The questions are as to the smallest p0351b1e

values of certain ratios of the form L(xl, ... X,)/S,, where in each

case L(xy,...,x,) is a llnear combination ~ of xl, Xgy oeny Xpi
L——x——xl, . . o _ 1))
L=3Z—x)A<i<j<m; - - - @
L=x,— x. ' : ' €]

- We may suppose without loss of generality that x, =0, x, =1,
since the ratio L/S, is invariant under translation and change of scale.

Lemma—~If Z is a. random variable  distributed . oi’(zr [0, 1], if
2c>a>0,h>0, then .

[a -+ hEZP[c + hEZ®] > a?)c,
with equality when Z =0 almost surely.

Proof—This is an immediate consequence of EZ:*< EZ (EZ
denotes the cxpectatlon of Z).

Corollary 1.—If X is a random varmble distributed over [0, 1], zf _

Pr {X = 1}> p then
PEX?® < [EX]?, .

wzth equality when Pr{X = O} =q = l —p, Pr X=1=p

Proof—The distribution of X may be achieved in the following
way. Let T be a random variable distributed over [0, 1], andlet X=T
with probability 1 — p = ¢, X =1 with probability p. Then EX =p
+ qET EX?2=p + qET? It suffices to apply the. lemma with a = ¢
Corollary 1 a.—(X — x)?%S,2 > 1/n, with equality when X; = X,

Il

- xn—l

Proof—Apply Corollary 1 to the random variable X which takes
each of the values x;, x,, ..., x, with probability 1/n; p=1/n.
Then EX =%, VX = (n— 1) S,2/n. By . Corollary 1, [EX®)[[EX]?
< lp, hence [VX][EX]* = {EX? — [EXP}/[EX]*< 1/p — 1 = q/p,
so that [EX?)/[VX]> plqg and %*[(n —. 1) S.%n] = (1/n)/(1 — 1/n)
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=1/(n — 1). Thus %%/S,2> 1/n, with equality when x, = x, =
=Ry = 0 (élssuming X = O’ x, = 1)

One finds by applying Corollary 1 to 1 — X that also (x, — %3/
82> 1/n, with equality when X, = ... =X,

Corollary 2.—If X, Y are independent random variables identically
distributed over [0,1] and if Pr{X=0}2p, Pr{X=1}=>p(p<?)
then [E|Y — X |1%/[VX]>4pq, with equality when Pr{X =0} =q
=1—p, Pr{X=1}=p, or when Pr{X=0}=p,Pr{X=1}=q.

Proof—The joint distribution of X and Y is achieved by introducing
independent random variables 7' and U, identically distributed over
[0,1], and letting X = T with probability 1 —2p=¢—p, X=0
with probability p, X' = 1 with probability p; ¥ = U with probability
g — p, Y =0 with probability p, ¥ = 1 with probability p. Straight-
forward calculation yields -

E|Y—X|=2q+(q—pPE|U—-T|,-
E|Y—X|*=2{p+(q—pIEQ~T)?+ ET*]}
+@—pPEU—T)> '
Apply. the lemma, with a = 2pgq,
c=2p{p+(q—p)[EQ— D)+ ET?]}, h—(q p)2
observmg that 2c >a. One has
[E|Y— X|PE| Y — X|2]> a*lcz 2pg,
since E(1 — T)?+ E(T®) < 1; equality is achieved wﬁen T=0 or
T=1, U=T. Since E(Y — X)2=2VX, one has the conclusion
of Corollary 2. . . .

Corollary 2 a—g2/S2> 4/n, where
n n
&=22 X(x—x)n(n—1);
i=1 jeiti
with equality when X, =X, = ... =X,., OF When Xs=3X; = ... =X,

- Proof—Apply Corollary 2 a to the situation where X and Y each
take each of the values Xy, ..., x, with probability 1/n; p = 1/n. One
has ‘

E|Y—X|=2 2 lx— x|
= =]

=2 2 2 (x —X)/n2 (n'_' l)ga'/n

ir1 j=i+1
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'fhen
gl2S2=n [E| Y — Xl]2/(n _ 1) [VX]> 4n; -
with equality when x; =X, = ... =X,y or When X = ... =Xy

As to (3), one observes that if X is distributed over [0, 1], VX
assumes its maximum value } when Pr{X =0} = Pr{X=1}=1.
Thus (x, — x,)%/S,2 >4 (n — 1)/n, with equality achieved when n is
even and x; = Xp = ... = XuX 30y X(aj2)41 = - - >

At the suggestion of Dr. Nair, the following remarks are added,
bearing on the greatest possible values of the ratios L/S, for (1) and
(3) above. We remark first that the ratio in the lemma is not greater
than h -+ a?lc if 0 < ¢ <a, h > 0, with equality when Z = cfa. To
see this, let A denote the ratio, and set z = EZ. Since EZ = (EZ)?,
we have A< (a + hz)%/(c + hz?%); but this latter assumes its maximum,
h -+ a®/c, when z = c/a. Under the hypotheses of Corollary 1 one
then finds [EX]?< q EX? with equality when Pr{X=0}=p
Pr{X=1}=g¢q. From this the method of Corollary 1 a yields
Dr. Nair’s maxima (1 @) and (1 4) in [3] (obtained by him in [1]) Also,
using the method of Corollary 1, one finds

VX = EX*— (EX)*=p + (¢ — ) ET* — [p + (¢ — p) ETP’
> pq — 2p(q — p) (ET) [1 — ET]< p/2,
with equality when T = 4. This gives Dr. Nair’s maximum @ in [3]
(obtained by him in [1]).
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(Present issue).

A Tail-Piece to Brunk’s Paper
By K. R. Nar

My correspondence with Dr. H. D. Brunk to which he adverts in his
paper, appearing elsewhere in this issue, revealed that he had not seen
my (1948) paper. It will be of interest to readers of his paper if the
lower limits obtained by him for certain ratios are placed side by side
with the corresponding upper limits I had given in my paper.
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Thus we have,

L_Ga=2_(e—1y

! S < = _ ) (1 a)
%<g¢_§;1)2\(n—nl)2 | (15)
R Yo | @
4 ng <40+ o E)

In my (1948) paper it was shown that the upper limit in" (1 a) is
reached when X1 = Xp= ... =X,,; thatin (1b) when x, = ... =x,;
and that in (2) when x,= ... = w—1 = % (61 + x,). The (1948) and
(1956) papers show by two different methods that the upper limit in
(3) is reached when xj, x,, ..., x, are equally spaced.

It follows from our comblned results that when (x — %S, reaches

its upper- limit, (% — x,)/S, reaches its lower limit, and vice versa; and

that, in either case, g,/S reaches its lower limit.

_Finally, I wish to thank Dr. Brunk for coming forward with a
solution of the problems posed by me and for sending me an advance
copy of the manuscript of his paper.
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