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1. Introduction

Using the geometrical theory of confounding, Bose (1947) has investi
gated the problem of determining the maximum number of factors
that can be accommodated in the case of the general symmetrical fac
torial design i*", in which each block is of size s-, so that no degrees of
freedom belonging to a main effect or an interaction involving t or a
lesser number of factors are confounded. Denoting this number by
m, (r, s), he has shown that this equals the maximum number of points
which can be chosen in PG (/•-!, s) so that no ' r should be conjoint.
By noting that (r, s) must equal the number of distinct points in
PQ (,• _ s), we obtain Fislier's result (Fisher, 1942, 1945)

ma (/•, s) =

For the case t = 3, Bose has obtained the following results

(a) ms (3, 5) = i + 2, when j is a power of 2.
= j + 1, when 5 is a power of an odd prime.

(b) nis (4, 5) = + 1, when 5is a power of an odd prime.

(c) /Mg (/•, 2) = 2'-i.

It follows from (c) that in a factorial experiment in which
each factor is at 2 levels and the block size is 2^ the maximum number
of factors that can be accommodated so that no main effect or first
order interaction is confounded is 2K In this note, we shall, using Bose's
method, construct the (2", 2^^) and the associated (2^®, 2^"), (2", 2®), etc.,
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designs, and also enumerate the degrees of freedom actually confounded
in each case.

2. The (2", 2") Confounded Design

According to Bose's method, the construction of the (2^®, 2^^)
design, keeping up to second order interactions unconfounded, requires
the selection of 16 pomts in PG (4, 2), no three of which are coUinear.
These are given by the columns of the matrix.

1000011111100001

010001 1 100 0101 1 1

0010010010111011

000100 1 011011101

00001001 0 1101111

(2)

The confounded design corresponds to a 4-flat in the'15-flat at
infinity in PG (16, 2), and the equations of this 4-flat a;t infinity can be
written down in the form

+ Xa + Xg + Xg = 0

^1 + ^2 + ^4 + ^7 =0

+ ^2 + Xg + Xg =0

+ ^3 + X4 + Xg =0

^1 + ^4 + ^6 + ^10 = 0

•"^1 + ^3 + ^5 + ^11 = 0 Xq = 0 (3)
X2 + X3 + X4 + X12 = 0

X3 + X4 + Xg + Xi3 = 0

X2 + X4'+ X5 + Xi4 = 0

X2 + X3 + Xj + Xjg = 0

Xi + X2 + X3 + X4 + Xg + X16 = 6

In terms of the theory of groups, (3) would correspond to the
11 generators ABDG, ABEH, ACDJ, ADEK, ACEL, BCDM,
CDEN, BDEO, BCEP and ABCDEQ of the confounding sub-group.

• -If Cj, C2, . ..,Cn be any elements of GF{1), the treatmients in
the corresponding block are determined by the equations.; . ..
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- + ;C2 + AJs + ;C6 = Cj

Xl-\- X2+ Xi-\- X.; = Ci

+ ATa + JCg + ^8 = C3

- ATi + ATg + + X9 = C4

+ ^4 + ^5 + ^10 = C5

+ ^3 + + ^11 = (4)

^2 + ->^3 + ^4 + ^12 = C7

X3 + ^1:4 + ^5 + ^13 = Cg

X2 + Xi + Xs+ ^14 = Cg

^2 + ^3 + ^5 + ^16 = Cio

+^2 + -^3 + ^4 + -"^S + •^16 =

The intrablock sub-group is given by the 32 treatment combination
in the block obtained by taking Ci = Cg = ... = Cu = 0, and is
shown in Table I.

Taking the 2048 possible values of c^, c^, ...,Cu, we get the
2048 blocks of the design. The 2047 degrees of freedom confounded
belong to the 2047 pencils represented by

-P (^1 + ^^2 + ^3 + ^4 + ^5 + '̂ 6 + ^llJ + ^2 + ^3 + ^7 + ^8
+ Aio + All, + ^4 + Ag + A, + Ag + Aio + An, Ag

+ A4 + A5 + A7 + Ag + Ag + All, A3 + Ag + Ag + Ag +

Ag + Aio + All, ^1' Aj, A3, A4, Ag, Ag, Aj, Ag, Ag, Aiq, An}

(5)

where the A's do not simultaneously vanish. Each pencil now carries
only one degree of freedom, and calculations made show that of the
2047 degrees of freedom confounded, 140 belong to 4-factor inter
actions, 448 to 6-factor interactions, 870 to 8-factor interactions, 448 to
lO-factor interactions, 140 to 12-factor interactions and the remaining
one to the 16-factor interaction.

3. The (2^^ 2^") Confounded AND OTHER Associated Designs

For obtaining a (2^®, 2^") design of the required type, that is, not
confounding ariy main effect or first or second order interaction, we have
to simplystart with the matrix obtained from (2).by omitting onecolumn,
say, the last,. Thus^, the columns of the matrix



RESEARCH :NOTES

1 0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 1 0 0 0 1 1 1 0 0 0 1 0 1 1

0 0 1 0 0 1 0 0 1 0 1 1 1 0 1

0 0 0 1 0 0 1 0 1 1 0 1 1 1 0

0 0 0 0 1 0 0 1 0 1 1 0 1 1 1

1^3

(6)

give the co-ordinates of 15 points in PG{4,2), no three of \yhich are
collinear.

Treatments are now represented by the finite points of PG (15, 2),
and the vertex of the required design is given by the equations (3),
omitting the last equation, viz., + ^2 + ^3 + ^4 + = 0,
so that the 10 generators of the confounding sub-group are ABCF,
ABDG, ABEH, ACDJ, ADEK, ACEL, BCDM, CDEN, BDEO and
BCEP. i

The degrees of freedom confounded are carried by the 1023 pencils
represented by

P {Aj + Ag + A3 + A4 + Ag + Ag, Ai + Aj + Ag + A, + Ag + Ajo,

"Jr ^4 + .^6 + ^7 + ^8 + Vj ^2+ ^^4 + ^6 +

Aj + Ag + Ag, A3 + Ag + Ag + Ag -f Ag + A^o, A^, Ag,

^3' ^4> ^5' ^8' ^9' ^lo}- (7)

In this case, of the 1023 degrees of freedom confounded, 105 belong
to 4-factor interactions, 280 to 6-factor interactions, 435 to 8-factor
interactions, 168 to 10-factor interactions and 35 to 12-factor inter
actions. • ' '

Following this, procedure, the (2", 2"), 2^), 2>), (2^\ 2%
(210, 2«), (28, 2^), (28, 23), (2', 2^) and (2^, 2) designs'are readily
constructed, the number of degrees of freedom confounded for the
various high order interactions in these designs being as shown in
Table II, in which the degrees of freedom confounded for the (2^®, 2^")
and (2^®, 2") have also been shown for convenience of reference.
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Table II

Number of degrees of freedom for various high order
interactions confounded in (2", 2^^), etc., confounded designs

Design

.Total No.
of degrees

of freedom
confounded

Degrees of freedom confounded for interactions of

4 6.

Factors 'Factors
; 8

Factors
10

Factors
.,12

Factors

14 '

Factors

16
Fact ors

(2i«, 211) 2047 140 448 870.. 448 , 140 .. 0 -- ^ 1

(215, 21") 1023 105 280 , 435 • 168 . 35 - 0 • 0

(21^ 2»). 511 . 77 168 - 203 - .56 . • 7 -• 0 - .0

(213,. 2") . 255 - 55 - 96 - • 87 • 16 1 0 • 0

(212, 2r) 127 38 52 - • 33 - • 4 -• 0 0 • 0 •

(211,2'') 63 25 27 10 1 0 0 0

(2i», 2=) 31 16 12 3 0 0 0 0

(2^"2•«) 15 10 4 1 0 0 0 0

(28,'23) • 7- 6 - 0 - 1 -- 0 - -0- - 0 — 0 -

(2^ 22) '• 3 " 3 ^ 0 ' 0 - 0 0 "o " 0 "

(2«,2) "1 1 0 0 ' ' 0 0 0 •• 0 • '

<- -

1. Bose. R. C.

2. Fisher, R A.

3 .

-References -

"Mathematical theory of the~ symmetric; 1 fac
torial design," Sankhya, 1947, 8, 107-66.

"The theory of confounding in factorial experi
ments in relation to the theory of groups;"
^/m. fwgg/;., 1942,. 11, 341-53.^

"A system of confou-.ding for factors with more
than two alternatives, givi ig cornpletely ortho
gonal cubes and higher powers," /6;W.,-,1945,
12, 283-90.

Note on Two Papers of K, R. Nair " " '

By H. D. Brunk

Certain questions raised by Dr. K. R. Nair in recent papers '̂̂
and in correspondence witfi the author are answered in this note, Cordl-
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laries: 1 and 2 below are elementary in character, and may appear in
one form or another in the literature. Nevertheless it is hoped that
their presentation here willbe of interest to readers of Dr. Nair's papers.

- n ,

Let Xi, ..be real numbers, < a:2< ..., < x„,, x = H x,ln,
n

S/ = I! (Xi —x)^l(n — 1). The questions are as to the smallest possible

values of certain ratios of the form L{xi, ...,x„)IS^, where in each
case Lixi,...,x„) is a linear combination of ;>Ci, ats,

L = x-xi; (1)

L = USix<-x,)il^i<j^n); - (2)

- L = x„ — x-i_. . (3)

We may suppose without loss of generality that = 0, 1,
since the ratio is invariant under translation and change of scale.

Lemma.—If Z is a- random variable distributed over [0, 1], if
2c > a > 0, h > 0, then ,.

[a + hEZ\^l[c + hEZ^-^ a^lc,

with equality when Z = 0 almost surely.

Proof.—This is an inimediate consequence of EZ^ < EZ {EZ
denotes the expectation of Z).

Corollary 1.—If X is a random variable distributed over [0, 1], if
Pr {X = 1}^ p//len

pEX^^[EX]\

with equality when Pr {X = 0} = q = 1 —p, Pr {X = 1} = p.

Proof.—The distribution of X may be achieved in the following
way. Let T be a random variable distributed over [0, 1]^ and \qX X —T
with probability \ —p = q, X=.\ with probability p. Then EX = p
+ qET, EX^ = P + qET^. It suffices to apply the. lemma with a —c
= p, h = q.

Corollary - 1 a.—(x — Xi)^/S,2 ^ .1/n, with equality when ^^y.^

= • • • = x„-i.

Proof—Apply Corollary 1 to the random variable X which takes
each of the values x^, x^, ..., x„ with probability._l/n; p = Ijn.
Then EX = x, VX=(n- 1) S^^jn. By Corollary 1, [EX^]I[EX]^
< lip, hence [VX]I[EXY = {EX^ .- [£Z]2}/[£Z]2 < 1/p - 1 = qjp,
so that [EX^]l[VX]^plq and JcVKn - 1)-5,7"] >(l/n)/(l - l/«)



188 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

= l/(n —1). Thus Ijn, with equality when = x^ —'...
— Xn-T^ - 0 (assuming x^ = 0, x„ = 1).

One finds by applying Corollary 1 to I —X that also (x,. —x)^/
iS/ ^ 1jn, with equality when Xj = ... = x„.

Corollary 2—If X, Y are independent random variables identically
distributed over [0, 1] and if Pr {X = 0}^ p, Pr {X = 1}^ p (p < i)
then [E IY —X |]^/[VX]> 4pq, with equality when Pr {X = 0} = q
= 1 - p, Pr {X = 1} = p, or when Pr {X = 0} = p, Pr {X = 1} = q.

Proof.—The joint distribution of X and Y is achieved by introducing
independent random variables T and U, identically distributed over
[0, 1], and letting X — T with probability I — 2p = q —p, X = 0
with probability p, X = I with probabiUty p; Y = U with probability
q —p, F = 0 with probability p, Y = I with probabihty p. Straight
forward calculation yields

E\Y^X\=2pq + {q-pyE\U-T\,

E\Y-X\^ = 2p{p + {q-p) {E{1 - T)^ + ET^]}

+ {q-pyE{U-T)\

Apply the lemma, with a = 2pq,

c^2p{:p + {q-p) {E (1 - Tf + ET^}, h = (q - p)^

observing that 2c > a. One has

[£| Y-X\fl{E\ Y-Xj^]^ a^c^ 2pq,

since E{\ — TY E (T^) < 1; equality is achieved when T = 0 or
T=l, U=T. Since EiY—X)^ = 2VX, one has the conclusion
of Corollary 2.

Corollary 2 a.—g//S/^4/n, where

- g^^2S S {Xj — x,)ln (« — 1);
i=l /si+1

with equality when = Xg = ... = x„_i, or when Xg = Xg = ... = x„.

Proo/.—Apply Corollary 2 a to the situation where X and Y each
take each of the values x^, .x„ with probability l/«; ^ = Ijn. One
has

E\Y-X\ = S E \xi-xi\lri'
1=1 y=i

= 2 £ E (x/- xdln^ = (n - 1) gjtt.
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Then

= n{E\Y-X\Yl{n - 1) [VX] ^Ajn;

with equality when = Xg = ... = x„-i or when = ... = x„.

As to (3), one observes that if X is distributed over [0, 1], VX
assumes its maximum value i when Pr {X= 0} = Pr {X= 1} =
Thus (x„ - Xi)2/5'/ ^ 4 (n - l)/«, with equality achieved when n is
even and = Xj = ... = x„x /2,„ X(„/2)+i = — = •

At the suggestion of Dr. Nair, the following remarks are added,
bearing on the greatest possible values of the ratios LjS^, for (1) and
(3) above. We remark first that the ratio in the lemma is not greater
than h + a^jc if 0 < c < a, h> 0, with equality when Z = cja. To
see this, let A denote the ratio, and set z = EZ. Since EZ^ ^ (EZ)^,
we have A< (a + hzYj{c + hz^); but this latter assumes its maximum,
h + a^jc, when z = cja. Under the hypotheses of Corollary 1 one
then finds [EX]^^gEX^ with equality when Pr {X = 0} —p,
Pr {X= 1} = q. From this the method of Corollary 1 a yields
Dr. Nair's maxima (1 a) and (1 b) in [3] (obtained by him in [1]). Also,
using the method of Corollary 1, one finds

VX = EX^ - {EXf =p + {q-p)ET^-[p + {q-p) ETf

^pq-2p{q- p) (ET) [1 - ET] < pft,

with equality when T = ^. This gives Dr. Nair's maximum (2) in [3]
(obtained by him in [1]).
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A Tail-Piece to Brunk's Paper

By K. R. Nair

My correspondence with Dr. H. D. Brunk to which he adverts in his
paper, appearing elsewhere in this issue, revealed that he had not seen
my (1948) paper. It will be of interest to readers of his paper if the
lower limits obtained by him for certain ratios are placed side by side
with the corresponding upper limits I had given in my paper.
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Thus we have,

1 ^ fe - x)^ ^ (n - 1)2
a«)

(2)

3n • (3)

In my (1948) paper it was shown that the upper limit in (1 a) is
reached when Xi = X2= ... = x„_i; that in (1 b) when ;c2 =
and that in (2) when = ... = x„_i = i{x^ + xj. The (1948) and
(1956) papers show by two different methods that the upper liniit in
(3) is reached when xj^x^, ...,x„ are equally spaced.

It follows from our combined results that when (x„ —x)lS^ reaches
its upper-limit, (x —Xi)IS^ reaches its lower limit, and vice versa; and
that, in either case, gJS^ reaches its lower limit.

Finally, I wish to thank Dr. Brunk for coming forward with a
solution of the problems posed by me and for sending me an advance
copy of the manuscript of his paper.
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